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Dynamic charge-density correlation function in weakly charged polyampholyte globules
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We study solutions of statistically neutral polyampholyte chains containing a large fraction of neutral
monomers. It is known that such solutions phase separate at very low concentrations, even if the quality of the
solvent with respect to the neutral monomers is good. The precipitate is semidilute if the chains are weakly
charged. This paper considefissolvents and good solvents, and we calculate the dynamic charge density
correlation functiong(k,t) in the precipitate, using the quadratic approximation to the Martin-Siggia-Rose
generating functional. It is convenient to express the results in terms of dimensionless space and time variables.
Let £ be the blob size, and letbe the characteristic time scale at the blob level. Define the dimensionless wave
vector q= £k, and the dimensionless tinge=t/7. In the regimeg<1, corresponding to length scales larger
than the blob size, and<ls<q 4, corresponding to time scales in between the blob relaxation time and the
relaxation time at scalg™!, we find that the charge density fluctuations relax according to the power law
g(q,s)~qg?s~*2 This relaxation is qualitatively different from that of a neutral semidilute polymer solution.
We expect our results to be valid for wave vectqrs0.1, where entanglements are unimportant.
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[. INTRODUCTION if one considers larger and larger length scales, and the
break-even point is at the blob size. At length scales larger
A polyampholyte is a polymer chain that contains electri-than the blob size the interaction is strong, and the charged
cally charged monomers of both signs. Apart from themonomers rearrange themselves spatially in order to mini-
charged monomers, the chain may also contain neutrdnize the energy. This leads to a screening of the interaction.
monomers. In this paper we study polyampholytes in which?A side effect of these rearrangements of the charges is an
the neutral monomers are in the majority, so the chains argfféctive attraction, causing the system to appear collapsed
only weakly charged. The positive and the negative mono®n length scales larger than This physical picture, origi-
mers are distributed with equal probability and without cor-N2lly Proposed in Ref[2] for the case of an isolated col-
relations along the chain, separated from each other by flex2PSed polyampholyte chain, shows why the electrostatic
ible neutral spacers. The chains are present in a solvent. WaST€€ning length«* has to be equal to the blob size
consider two situations; either the quality of the solvent withWhich is also equal to the hydrodynamic screening length,

respect to the neutral monomers is good, or the solvent i@"d to the static screening length of the excluded volume
under @ conditions. interactions in case of a good solvent. Since for weakly

It was shown in[1] that in both situations the system charged pc_)Iyamphontes the blob size is much larger than the
starts to phase separate already at very low concentratior@/€rage distance between two charged monomers, Debye-
The precipitate resembles a semidilute solution, and is chat3Uckel theory{3] is applicable. An estimate faf was given
acterized by a correlation length that is independent of thd [2]. If b is the root-mean-square distance between two
chain length(provided that the chains are long enougli ~ Mmonomers ne|ghbor.|ng along the chaing the fract.|on of
the quality of the solvent is good, further collapse of theMonomers that carries a charge, afe e“/4mekgT is the
precipitate is prevented by the second order virial coefficienBi€mum length @ is electron charges is the electric permit-
(also called the excluded volume paramgtemereas if the tivity of water, kg is Boltzmann’s constant, andl is the
solvent is undem conditions, further collapse is prevented aPsolute temperaturethen
by the third order virial coefficient2]. The noncompact se- 2
midilute precipitate can be regarded as a dense melt of blobs. E~ b_ 1)

At length scales small compared to the blob sjz¢he elec- f/

trostatic interaction is wealtelative to the entropy and the

system is indistinguishable from a single, neutral, noncol- As shown in[2], an isolated neutral polyampholyte chain
lapsed polymer coil. In case of a good solvent, the chainwill collapse into a spherical globule, whose interior is lo-
conformation is a Se'f_avoiding Wa|k’ whereas in case ef a Ca”y indistinguishable from the il’lteriOI’ Of the pl’ecipitate Of
solvent, it is a random walk. On these short length scales, th@ Phase separated solution. However, if the isolated chain has
Charged monomers occupy random positions in space, and %Considerable net Charge, there is the pOSS|b|I|ty that the
the electrostatic interaction is unscreened. The importance d@rmation of a spherical globule is prevented by the electro-

the electrostatic interaction relative to the entropy increase8tatic repulsion. In that case the chain will attain the shape of
a linear array of globulegalso called pear]s connected to

each other by long, thin stringsecklace mod€]4,5]). The
*Corresponding author. critical net charge above which the spherical globular state is
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unstable against necklace formation is of the same order dfehavior on time scales smaller than the blob relaxation time
magnitude as the typical excess charge of a “statisticallyr, but Rouse-like behavior on time scales larger thdt4].
neutral” chain. This means that in a representative ensembl&ince it was shown in Ref9] that the quadratic approxima-
some chains will attain the shape of a sphere, while otherSon leads to the prediction of Rouse-like behavior, our
will attain the shape of a necklace. The pearls are collapse@dnalysis is only applicable if both the length scale is larger
and locally indistinguishable from the precipitate of a phasehané, and the time scale is larger thanAn expression for

separated solution. 7 can be obtained by realizing that below the blob level, the
system is indistinguishable from a single, neutral, noncol-
Il. METHOD AND REGION OF APPLICABILITY lapsed chain. This leads to the estimgie]
We study the dynamics of the charge density fluctuations ned
inside the collapsed phasgprecipitate, globule or pearlus- T 3

ing the quadratic approximation to the Lagrange version kT

[6,7] of the Martin-Siggia-Rose formalisfi8]. We will fol-
low closely the techniques of a paper by Fredrickson andvhere is the viscosity of water and is given by Eq.(1).
Helfand[9]. Readers who wish to follows the details of our Finally, we discuss the region of validity of the quadratic
calculation are advised to study RE®] first, especially its approximation. It entails expanding the effective Hamil-
Appendix. First we will determine in what length scale re-tonian in powers of the charge densip(r), and retaining
gime this formalism is expected to give correct results. Ther@nly the second order term. This approximation can only be
are two important length scales in the system: the blob&ize justified if the typical amplitude ofi(r) is small. At length
and the entanglement length. At length scales smaller scales smaller thag, the system is strongly fluctuating, and
than ¢, the thermal energy is larger than the electrostatidhe amplitude ofj(r) is large. At length scales larger than
energy, and the system behaves as if it were a neutral singtBe charge density fluctuations are strongly suppressed by the
chain. Since in the past the dynamics of neutral chains havelectrostatic interactions, and the amplitude/¢f) is small.
been studied extensive[j10], and we are mainly interested It follows that the quadratic approximation is acceptable at
in the influence of the electrostatic interaction, we will only length scales larger thafy but not at length scales shorter
consider length scales that are larger tifakvhen observed thané.
at these scales, the chain conformation is always a random Summarizing, the approximations made in this paper are
walk, even if the quality of the solvent is good. This is due toexpected to be reasonable if the length scale is larger than the
a screening of the excluded volume interactiqi®]. It  blob size but smaller than the entanglement length, and the
means that the excluded volume parametenters the phys- time scale is larger than the relaxation time at the blob level.
ics at large length scales ¢ only by fixing the blob sizé2].
Anqther impolrtant length scalg is the entanglement length |, AL CULATION OF THE DYNAMIC CHARGE
& Itis very d'lffICFl|t to take the mfluence_of entanglements CORRELATION FUNCTION
on the dynamics into account, and we will not make an at-
tempt to do so. This means that our results will not be valid As mentioned in the introduction, we wish to describe the
on length scales large compared to the entanglement lengfitecipitate of a solution of weakly charged polyampholytes.
&.. One can obtain an estimate fgy in the following way.  The individual chains are assumed to be much longer than
In a polymer melt, the number of monomeNg in between the minimum length required for an isolated chain to col-
two entanglements is of the orddi,~200 [11]. Since the lapse into a globule. All chains have exactly the same num-
polyampholyte precipitate can be regarded as a dense melt ber of charged monomers, and these monomers are placed at
blobs, it follows that the typical entanglement length is givenregular distances along the backbone. The last two assump-
by tions, which are made in order to simplify the model, do not
restrict the generality of our results. Ltbe the number of
Eo~ gNéfh 10¢. 2 charged monomers per chaithe charge per monomar,
the number of chains in the precipitate, avithe volume of
At length scales that are large comparedfoit is to be the precipitate. Note that cannot t_)e_ chosen independently
expected that the dynamics occur via some kind of reptatiordf®m np and N, because the precipitate has a well-defined
and on these scales the relaxation of charge density fluctu§ensity[2]. Let the coarse grained conformation of chain
tions probably becomes very slofgompare with Ref[12], ~ be described by the three-dimensional ve&gfr), wherer
where systems with short range interactions are stidied 1S @ continuous parameter running along the backbone. It is
Next we discuss the hydrodynamic screening length ~ defined such .that for two charged monomers neighboring
It was argued ifi13] that in a semidilute solutiorg, has the ~ &long the chain we havar=1. We simplify the model by
same order of magnitude as the static correlation leggth Smearing out the electric charges along the chain, in such a
both underé conditions, and under good solvent conditions. W&y thated(r)d7 is the amount of charge in between the
This prediction was confirmed recently by extensive com-Points labeled byr and r+d7, where 6(r) is a Gaussian
puter simulationg14]. It follows that at length scales smaller random variable with first two moments
than the blob siz&, the chain exhibits Zimm-like behavior,
whereas at length scales larger tharit exhibits Zimm-like (04(7))=0, (0(7)0p(7'))=8(7—7") 5. (4)
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Since we will work in the quadratic approximation, the twice with respect tch. In principle, the average over the
fact that we switch to a Gaussian charge distribution has nquenched disorder should be perfornadter the differentia-
effect on the final result. We will describe the system bytion, but sinceZ[h=0]=1 is independent of the quenched

means of the following effective Hamiltonian: variables(see the Appendix the order of operations can be
interchanged. This is a great simplification, and it makes the

H 3 (N 2 (drR,y(7))? MSR formalism especially suitable for systems with

KeT Zszfo =\ dr quenched disorder.
Starting from Eqgs(A9) and (A10), and substituting the

a(T Oo(7") effective Hamiltonian Eq(5) for the interaction energy, one

+— f f (5) arrives at the expression for the MSR functional. Since
2 ab=1 |Ra(7' Ry(7")]’ analogous calculations have been published befsee in

particular Ref.[9]) we will not present the details, but just

where b is the root-mean-square distance between twgjive the result. During the derivation, the following fields
charged monomers neighboring along the chain. From nowyise

on, we will choose the units of length, mass, and time such

that A i
J(k,t)=2>, | dr6.(7) exgik-Ra(,1)],

y=1, kgT=1, B?=3, () :
where y is the effective friction coefficient per charged Pk, )= fdr 0a(7) k-Ra(7,1)
monomer. Ultimately, we are interested in how fluctuations a
in the charge density decay in space and over time. In terms exdik-Ra.(rt 9
of the annealed variabld?,(7) and the quenched variables H a(mt)] ©
6,(7), the charge density is given key(r,t), wheré In the quadratic approximation, the final disorder aver-

aged expression fof[ h] is

H(r )= 2 fdf 0,(7) S(r—Ra(7)). 7

20} [ DysDU;Dg: D,
In terms of fp the Fourier transform of the dynamic
charge density correlation function is given by XGXL{—£+f fh(—k,—w) Pi(k,w) |, (10
wJk
e . .
ga(k,t)= v(zp(—k,t)np(k,t)}, (8)  where the Lagrangiad is given by(there are summations

over the indices,|)

where the brackets denote an average over the annealed vari- Ao

ables. Note that the correlation function depends explicitly L= _/f f—lﬂl(—k,—w)tﬂz(k,w)

on the disorder. The calculation is simplified considerably by P

making use of the fact that the correlation function is self-

averaging, which means that(k,t)=g, (k,t) with prob- _if f(ﬁi( K, — ) ¢i(K,»)

ability 1, where the bar denotes an average over the

quenched variable®’. This means that in order to find

g4(k,t) for a representativé drawn from the Gaussian prob- f j\/”( k,— o) i(—k,— o) ¢j(k,w). (12)

ability distribution Eq.(4) (which is what we are aftgr it

suffices to calculate the average of this quantity over the

disorder. c=npN/V is the density of charged monomers. The inte-
We will calculate g(k,t):=g, (k,t) by means of the 9ral measures are defined by

Lagrange versior{6,7] of the MSR (Martin-Siggia-Rosg

formalism [8]. In the appendix we have provided a brief f :=if de f:z

derivation of the MSR functional. It is convenient to intro- 2 k (2m)3

duce an external fieldh(k,t) that couples tofp(k t). The ) . )
dynamic charge correlation function can then be found by Although in the full expression for the functionalh]

differentiating the logarithm of the MSR function@[h] there are more fields present, in the quadratic approximation
these fields couple neither i, nor to ¢;, and can there-

fore be omitted. Consequently, in the quadratic approxima-
The hat ongs denotes the dependence on the annealed variabldéon the hydrodynamic interactions are not taken into account
R.(7), and the quenched variablés(7). This notation should not in the calculation ofg(k,t). Therefore, our results are only
be confused with the notation in the MSR formalism, where the havalid in the length scale and time scale regime where the
indicates conjugated variablésee Appendix A We stick to these ~ dynamics are expected to be Rouse-like; which means length
notations because of convention. scales larger than the blob size, and time scales larger than

(12
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the blob relaxation time. The integrals ougrand¢; in Eq.  satisfyingt<tg, wherety is the Rouse tim¢10] of a single
(10) are Gaussian and can be calculated explicitly, aftechain. In this wave vector and time regime it is possible to
which g(k,t) can be obtained by differentiating the result find explicit and simple expressions fdy; (k,t). Those read-

twice with respect to the external field The result is ers who are interested in the calculation leading to (&6)
are advised to study the Appendix of REJ], where similar
(k.0) cVyi(k,w) calculations are worked out in detail. The result is
g(K,w)= — — )
(1= AVt Vo)) Vaikit) =exgg K742,

2

2 p e e : Kk
wherex“:=4x/'c is the Debye-Huakel expressioh3] for the Vot = — 6(—1) exif — k2t ¥2],

inverse square screening length. The functigpsare given |t/
by
L 2
- _ A EINLY,
Vll(kat)ZNJ dr(exdik-(R(7,t)=R(7,0))])o, VoK, t) = —6(t) |t|1,29XF1: k?[t[*2],
1 ~ V22(k1t) =01 (16)
Vlz(k,t)z Nj d7'<k R(T,t)
where 6(t) is the Heaviside step function. We omitted nu-
xexfgik-{R(7,t)=R(7,0}1)o merical constants of order unity. Although it is possible to
' ’ ’ find explicit expressions for the Fourier transforms(k, w),
1 R the resulting expression f@(k,») would be rather compli-
Vo(k,t)=— Nj dr(k-R(7,0) cated. Instead, it is much more useful to derive a transparent,
albeit approximate, expression fok, ). An additional ad-
xexdik-{R(7,t)—R(7,0}1)o, vantage is that this simplified expression can easily be in-
verse Fourier transformed with respect to the frequency.
1 . . Consider the frequency regime>k*. By substitutingz=
VoK, t) = — Nj dr(k-R(7,t)k-R(7,0) —iwt, distorting the integration contour back to the real axis,
and expanding the integrand in powers 2"/ » [9], one
xexgik-{R(7,t)—R(7,0}])o- (14) arrives at the following approximate expressions for
Vii(k,w):
The average(---), is calculated with respect to the !
single-chain Rouse Lagrangialy, which is given by Vii(k,w)~|o|3%2,
|w|>k4= (—1+i)|o| Y>>0,
£=f deIQ(T,—w)FAQ(T,w) Vidk o)~ (-1-i)|o| Yk> w<O.
N 17
+f f de?(r,—w)R(r,w) Combining Eqs(13) and(17) one obtains
_ R PR(7,w) g(k,w)x — |w|>k?.
—IJ J drR(7,—w) ——. (15 oY (1+|ox4Y)2+1]
© a7
(18)
The calculation of the function¥;; in Eq. (14) can be There are two frequency regimes:
simplified by making use of the fact that we are only inter-
ested in processes occurring at length scales of the order of /T WPk 0| o<kt
the blob size¢. As is usual for the semidilute regime, the g(k,w)~ /UK 0| o]k (19

blob size reaches a finite limit when the chain length ap-

proaches infinity. This limiting value is reached once the The critical frequencyw.= «* that separates the two re-
chain length exceeds the value necessary for an isolated negimes in Eq.(19) corresponds to the inverse blob relaxation
tral polyampholyte chain to collapse into a globule. It fol- time in the Rouse moddlisex ~*~ &; with the help of Eq.
lows that for the processes occurring at length séatte  (6) one can restore the correct dimensipnas discussed
limit N—co is meaningful, and approached easily in experi-pefore, the formalism used can only be expected to describe
mental situations. Therefore, we can safely assume that th@e system correctly on time scales longer than the blob re-
wave vectors of interest satiskr~ ¢ '>N""2 which will  |axation time, and therefore we should only consider the re-
simplify the calculations. Considering the time scale, it ngime|w|<;<4. Using the relationg~ «~ ! and k>~c/, one
clear that the processes occurring at length s€aee much  obtains that for/£,<ék<1 and ¢k)*<&*w<1,

faster than those occurring at length sdsf€. Therefore, in

the calculation of;;(k,t) we can restrict ourselves to times c lg(k,w)=(&k)?| &4 w| Y2 (20)
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An inverse Fourier transform with respect to the fre- Again, the time dependence obtained is completely different

guency leads to from that of Eq.(22), meaning that the presence of the poly-
meric bonds has a large influence on the relaxation of charge
c gk, t)~(£k)? &4~ (21)  density fluctuations.

The dynamic correlation function for thietal density is

Equation (21) has a reduced form, the wave vector is qualitatively different from that for the charge density. To a
rescaled with the inverse blob size, and the time is rescalefirst approximation, the presence of the charges does not
with the Rouse expression for the blob relaxation time. Theéhave an influence on the dynamics of the total density. It
time rescaling seems to be wrong, the real blob relaxatiofollows that the dynamic correlation function for the total
time is given by the Zimm expressiom~ &3, because below density is the same as in the case of a neutral semidilute
the blob level the hydrodynamic interactions are notpolymer solution, which has been calculated within the qua-
screened. This incorrect result is due to the Gaussian aptratic approximation in Ref[9]. On length scales that are
proximation [9]. This does not mean that E1) breaks small compared to the radius of gyration of the chains, but
down completely, since at length scales larger t§aand  large compared to the correlation lengththe fluctuations in
time scales longer than the hydrodynamic interactions are the total density decagxponentiallywith time [see Eq.
screened and the chais Rouse-like, Eq(21) is valid, pro-  (3.19 in Ref.[9]].
vided that one inserts the correct basic time scaks the
blob level. Defining the dimensionless wave vectps £k

and the dimensionless time=t/7, we arrive at our final ACKNOWLEDGMENT
result _ _—
H.J.A. is grateful to the NWG@Netherlands Organization
¢ 1g(qé t,sm)~q2s 12 (22) for Scientific Researghfor financial support.
which is valid if both 0..kg<1 (corresponding to length APPENDIX

scales in between the blob size and the entanglement Jength _ _ . o

and 1<s<q * (corresponding to times in between the re- I this appendix we present a brief derivation of the

laxation time at the blob level, and the relaxation time atMartin-Siggia-Rose functional8]. We will follow the

length scaley~2). It would be interesting to test experimen- Method developed in Ref$6,7]. Consider a system df

tally the power law decay in time. interacting point particles in solution. Let=1, ... N num-

ber the particles, lett=1,2,3 denote a Cartesian coordinate,

and letR,,, be thea component of the position of particie

Let R denote the Bl-dimensional vector with components
In order to determine the role of the electrostatic interacR,,, and letU[ R] denote the interaction energy. In case that

tions in the expression for the dynamic charge density corR represents the coarse grained conformation of a polymer

relation function, consider a system in which the electrostatichain, entropic contributions have to be taken into account

interactions between the charges are switched off. Physand one should repladd by an effective Hamiltoniari.

cally, this could be achieved by immersing the polymer in aThe time evolution of the probability densiB[ R,t] is gov-

concentrated salt solution. Although in this case the chainsrned by the Fokker-Planck equatifitD,15

would not collapse or phase separate, we will still assume

that the system is semidilute, for instance by imposing a IP

nonzero concentration. In this case, the charge density cor- —i ~ VL [keTVP+PVU], (A1)

relation function would follow immediately from Eq$13)

and (16) by taking k=0. It follows that when the electro-

static interactions are absent, the charge density correlatio

decay according to a stretched exponengialexp(—at*?),

which is completely different from Eq.22). We conclude

that the appearance of the power lgws™ Y2 must be due to

IV. DISCUSSION

hereV represents the vector with compone#tsR,,,, and
ots denote inner products. The mobility mattiXR] is
given by[10]

the Coulomb interactions. In order to determine the influence Lhams=Hap(Ra—Rm) n#m,

of the polymeric bonds, we calculated for comparison the

dynamic charge density correlation function of a salt solu- 1)

: . : C L =B (A2)
tion, using the same formalism and approximations. The re- nang=

sult is an exponential decay of the correlations over time:

2 H.p(r) is the Oseen tensdsee Ref[10], Appendix 3 1)
clg(k,t)= ex — %] (23) describing the hydrodynamic interactidR,, denotes the po-
K%+ k2 sition of particlen, andy is the friction coefficient per par-
ticle. In order to derive the Martin-Siggia-Rose functional it
is convenient to switch first from the Fokker-Planck equation
2Use Eq.(3) in combination with Stokes relatiop~bz, and  to the equivalent Langevin equatipb5]. In the Stratonovich
express the result in terms of the units defined by (Bjy. interpretation it is given by6]
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JR 1 N “ A
7 =L VU+keTV-L=5g (V-0 +g-{ (A3) Z[h,h]=f DR(t)f DR(t)exr{—E[R,R]
The stochastic forcé is a white Gaussian noise with first +f dth(t)~R(t)+f dth(t) ~i|f€(t)}.

two moments
(A10)

It follows from Eq.(A8) that the correlation and response
) ) ) ] o functions of the system described by the Langevin equation

(@)=0 {dvgt))=lo(t—t"). (A4)

the mobility matrixL by [6] differentiation with respect to the external fields. However,
the continuum expression fif, as it is given here, is ill
g-9'=2kgTL. (A5) defined[16]. For instance, it is not possible to determine the

value of the equal-time response functi¢R(t)iR(t)). Re-
Equation(A5) leaves some freedom in the choice @f tracing the derivation of EQA10) one finds that the discreti-

which can be used to impose the condit{@h zation underlying the integrals over time is such that the
equal-time response functions are identically Zdr@]. This
V.g=0. (A6)  extra information is sufficient to remove all ambiguity from
Eq. (A10).

We discuss briefly the adequacy of the Langevin equation
Eq. (A7) to describe the dynamics of polymer solutions. It
has been argudd 7] that Eq.(A7) would be inconsistent, in
R the sense that whereas the thermal fluctuations of the mono-

- mers are taken into account, the thermal fluctuations of the
E:_L'VU+9'§+h' (A7) solvent velocity field are notthe Oseen tensor gives the
averagesolvent velocity as a function of the forgetn order
o . o to obtain the same level of description for both the particles
The _external forceh;(t) working on patrticlei is mtro—l and the solvent, Oono and Frefti7] introduced a set of
duced in order to be able to calculate response functiongqypled Langevin equations. However, it seems to us that the
This force will be set to zero afterwards. In Reff§,7] itis o)y difference between these Oono-Freed equations and Eq.
worked out in detail how one can derive, starting from a(a7) lies in the neglect of the solvent inertia in the latter, for
Langevin equation, the expression for the path probabilitthe following reason. It was shown in RdB] that if one
distribution P{R(t)]. By introducing the so-called conju- derives the MSR functional from the Oono-Freed equations,
gated field R(t), which is rather straightforward in the the velocity and its conjugate appear quadratic in the La-

Lagrange formalisni7], one finds the expression grang_ian, and_so th_ey can be integrated out _explicitly. The
resulting functional is identical to the one obtained from Eq.

(A7), provided that one takes the solvent density to be zero.

P[R(t),ﬁ]zj Dﬁ(t)exp{ —£[R,I§]+f dtﬁ(t)~i|§(t)}, Since the effects of solvent inertia on the dynamics of poly-

mer solutions are negligible anyway, we conclude that Eq.

(A8) (A7) is equivalent to the Oono-Freed equations. As an illus-

R tration of the irrelevancy of the solvent inertia, consider the
where the “Lagrangian”Z[R,R] is given by Zimm model. The characteristic frequeneyof fluctuations
with wave vectork is given by[10] w=kgTk*/67 7, where

. . . 7 is the solvent viscosity. It follows from the Navier-Stokes
E[R:R]:f di[kgTR-L-R+iR-(R+L-VU)]. (A9)  equation that the solvent inertia is negligible pifo< 7k?,

wherep is the solvent density. Taking the viscosity and the

N _ . . . density of water one finds that the effects of the solvent
The Martin-Siggia-Rose functional is defined by integrat-;, ortia” are negligible on length scales>10" 1% m. Never-

ing the path probability over all possible evolutioRét) of  heless, if one is interested in the correlation and response
the system, in the presence of the external figldsndh,  functions of the solvent velocity field, the Oono-Freed equa-
where the fielch couples toR. One obtains tions are certainly usefyp].

Using this, the Langevin equation simplifies(ibcan be
shown thatV -L =0)
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