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Dynamic charge-density correlation function in weakly charged polyampholyte globules
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We study solutions of statistically neutral polyampholyte chains containing a large fraction of neutral
monomers. It is known that such solutions phase separate at very low concentrations, even if the quality of the
solvent with respect to the neutral monomers is good. The precipitate is semidilute if the chains are weakly
charged. This paper considersu solvents and good solvents, and we calculate the dynamic charge density
correlation functiong(k,t) in the precipitate, using the quadratic approximation to the Martin-Siggia-Rose
generating functional. It is convenient to express the results in terms of dimensionless space and time variables.
Let j be the blob size, and lett be the characteristic time scale at the blob level. Define the dimensionless wave
vector q5jk, and the dimensionless times5t/t. In the regimeq,1, corresponding to length scales larger
than the blob size, and 1,s,q24, corresponding to time scales in between the blob relaxation time and the
relaxation time at scaleq21, we find that the charge density fluctuations relax according to the power law
g(q,s);q2s21/2. This relaxation is qualitatively different from that of a neutral semidilute polymer solution.
We expect our results to be valid for wave vectorsq.0.1, where entanglements are unimportant.

DOI: 10.1103/PhysRevE.64.041802 PACS number~s!: 61.25.Hq
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I. INTRODUCTION

A polyampholyte is a polymer chain that contains elec
cally charged monomers of both signs. Apart from t
charged monomers, the chain may also contain neu
monomers. In this paper we study polyampholytes in wh
the neutral monomers are in the majority, so the chains
only weakly charged. The positive and the negative mo
mers are distributed with equal probability and without c
relations along the chain, separated from each other by fl
ible neutral spacers. The chains are present in a solvent
consider two situations; either the quality of the solvent w
respect to the neutral monomers is good, or the solven
underu conditions.

It was shown in@1# that in both situations the system
starts to phase separate already at very low concentrat
The precipitate resembles a semidilute solution, and is c
acterized by a correlation length that is independent of
chain length~provided that the chains are long enough!. If
the quality of the solvent is good, further collapse of t
precipitate is prevented by the second order virial coeffici
~also called the excluded volume parameter!, whereas if the
solvent is underu conditions, further collapse is prevente
by the third order virial coefficient@2#. The noncompact se
midilute precipitate can be regarded as a dense melt of bl
At length scales small compared to the blob sizej, the elec-
trostatic interaction is weak~relative to the entropy!, and the
system is indistinguishable from a single, neutral, nonc
lapsed polymer coil. In case of a good solvent, the ch
conformation is a self-avoiding walk, whereas in case ofu
solvent, it is a random walk. On these short length scales
charged monomers occupy random positions in space, an
the electrostatic interaction is unscreened. The importanc
the electrostatic interaction relative to the entropy increa
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if one considers larger and larger length scales, and
break-even point is at the blob size. At length scales lar
than the blob size the interaction is strong, and the char
monomers rearrange themselves spatially in order to m
mize the energy. This leads to a screening of the interact
A side effect of these rearrangements of the charges is
effective attraction, causing the system to appear collap
on length scales larger thanj. This physical picture, origi-
nally proposed in Ref.@2# for the case of an isolated co
lapsed polyampholyte chain, shows why the electrost
screening lengthk21 has to be equal to the blob sizej,
which is also equal to the hydrodynamic screening leng
and to the static screening length of the excluded volu
interactions in case of a good solvent. Since for wea
charged polyampholytes the blob size is much larger than
average distance between two charged monomers, De
Hückel theory@3# is applicable. An estimate forj was given
in @2#. If b is the root-mean-square distance between t
monomers neighboring along the chain,f is the fraction of
monomers that carries a charge, andl 5e2/4pekBT is the
Bjerrum length (e is electron charge,e is the electric permit-
tivity of water, kB is Boltzmann’s constant, andT is the
absolute temperature!, then

j;
b2

f l
. ~1!

As shown in@2#, an isolated neutral polyampholyte cha
will collapse into a spherical globule, whose interior is l
cally indistinguishable from the interior of the precipitate
a phase separated solution. However, if the isolated chain
a considerable net charge, there is the possibility that
formation of a spherical globule is prevented by the elect
static repulsion. In that case the chain will attain the shap
a linear array of globules~also called pearls!, connected to
each other by long, thin strings~necklace model@4,5#!. The
critical net charge above which the spherical globular stat
©2001 The American Physical Society02-1
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HINDRIK JAN ANGERMAN AND EUGENE SHAKHNOVICH PHYSICAL REVIEW E64 041802
unstable against necklace formation is of the same orde
magnitude as the typical excess charge of a ‘‘statistic
neutral’’ chain. This means that in a representative ensem
some chains will attain the shape of a sphere, while oth
will attain the shape of a necklace. The pearls are collap
and locally indistinguishable from the precipitate of a pha
separated solution.

II. METHOD AND REGION OF APPLICABILITY

We study the dynamics of the charge density fluctuati
inside the collapsed phase~precipitate, globule or pearl!, us-
ing the quadratic approximation to the Lagrange vers
@6,7# of the Martin-Siggia-Rose formalism@8#. We will fol-
low closely the techniques of a paper by Fredrickson a
Helfand @9#. Readers who wish to follows the details of o
calculation are advised to study Ref.@9# first, especially its
Appendix. First we will determine in what length scale r
gime this formalism is expected to give correct results. Th
are two important length scales in the system: the blob sizj
and the entanglement lengthje. At length scales smalle
than j, the thermal energy is larger than the electrosta
energy, and the system behaves as if it were a neutral si
chain. Since in the past the dynamics of neutral chains h
been studied extensively@10#, and we are mainly intereste
in the influence of the electrostatic interaction, we will on
consider length scales that are larger thanj. When observed
at these scales, the chain conformation is always a ran
walk, even if the quality of the solvent is good. This is due
a screening of the excluded volume interactions@10#. It
means that the excluded volume parameterv enters the phys-
ics at large length scales.j only by fixing the blob size@2#.

Another important length scale is the entanglement len
je. It is very difficult to take the influence of entanglemen
on the dynamics into account, and we will not make an
tempt to do so. This means that our results will not be va
on length scales large compared to the entanglement le
je. One can obtain an estimate forje in the following way.
In a polymer melt, the number of monomersNe in between
two entanglements is of the orderNe'200 @11#. Since the
polyampholyte precipitate can be regarded as a dense me
blobs, it follows that the typical entanglement length is giv
by

je;jNe
1/2;10j. ~2!

At length scales that are large compared toje, it is to be
expected that the dynamics occur via some kind of reptat
and on these scales the relaxation of charge density fluc
tions probably becomes very slow~compare with Ref.@12#,
where systems with short range interactions are studied!.

Next we discuss the hydrodynamic screening lengthjH .
It was argued in@13# that in a semidilute solution,jH has the
same order of magnitude as the static correlation lengthj;
both underu conditions, and under good solvent condition
This prediction was confirmed recently by extensive co
puter simulations@14#. It follows that at length scales smalle
than the blob sizej, the chain exhibits Zimm-like behavior
whereas at length scales larger thanj, it exhibits Zimm-like
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behavior on time scales smaller than the blob relaxation t
t, but Rouse-like behavior on time scales larger thant @14#.
Since it was shown in Ref.@9# that the quadratic approxima
tion leads to the prediction of Rouse-like behavior, o
analysis is only applicable if both the length scale is larg
thanj, and the time scale is larger thant. An expression for
t can be obtained by realizing that below the blob level,
system is indistinguishable from a single, neutral, nonc
lapsed chain. This leads to the estimate@10#

t;
hj3

kBT
, ~3!

whereh is the viscosity of water andj is given by Eq.~1!.
Finally, we discuss the region of validity of the quadra
approximation. It entails expanding the effective Ham
tonian in powers of the charge densityc(r ), and retaining
only the second order term. This approximation can only
justified if the typical amplitude ofc(r ) is small. At length
scales smaller thanj, the system is strongly fluctuating, an
the amplitude ofc(r ) is large. At length scales larger thanj,
the charge density fluctuations are strongly suppressed by
electrostatic interactions, and the amplitude ofc(r ) is small.
It follows that the quadratic approximation is acceptable
length scales larger thanj, but not at length scales shorte
thanj.

Summarizing, the approximations made in this paper
expected to be reasonable if the length scale is larger than
blob size but smaller than the entanglement length, and
time scale is larger than the relaxation time at the blob lev

III. CALCULATION OF THE DYNAMIC CHARGE
CORRELATION FUNCTION

As mentioned in the introduction, we wish to describe t
precipitate of a solution of weakly charged polyampholyt
The individual chains are assumed to be much longer t
the minimum length required for an isolated chain to c
lapse into a globule. All chains have exactly the same nu
ber of charged monomers, and these monomers are plac
regular distances along the backbone. The last two assu
tions, which are made in order to simplify the model, do n
restrict the generality of our results. LetN be the number of
charged monomers per chain,e the charge per monomer,np
the number of chains in the precipitate, andV the volume of
the precipitate. Note thatV cannot be chosen independent
from np and N, because the precipitate has a well-defin
density@2#. Let the coarse grained conformation of chaina
be described by the three-dimensional vectorRa(t), wheret
is a continuous parameter running along the backbone.
defined such that for two charged monomers neighbor
along the chain we haveDt51. We simplify the model by
smearing out the electric charges along the chain, in suc
way thateu(t)dt is the amount of charge in between th
points labeled byt and t1dt, whereu(t) is a Gaussian
random variable with first two moments

^ua~t!&50, ^ua~t!ub~t8!&5d~t2t8!dab . ~4!
2-2
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DYNAMIC CHARGE-DENSITY CORRELATION FUNCTION . . . PHYSICAL REVIEW E64 041802
Since we will work in the quadratic approximation, th
fact that we switch to a Gaussian charge distribution has
effect on the final result. We will describe the system
means of the following effective Hamiltonian:

H
kBT

5
3

2b̃2E0

N

dt (
a51

np S dRa~t!

dt D 2

1
l

2 (
a,b51

np E
0

N

dtE
0

N

dt8
ua~t!ub~t8!

uRa~t!2Rb~t8!u
, ~5!

where b̃ is the root-mean-square distance between
charged monomers neighboring along the chain. From n
on, we will choose the units of length, mass, and time s
that

g51, kBT51, b̃253, ~6!

where g is the effective friction coefficient per charge
monomer. Ultimately, we are interested in how fluctuatio
in the charge density decay in space and over time. In te
of the annealed variablesRa(t) and the quenched variable
ua(t), the charge density is given byeĉ(r ,t), where1

ĉ~r ,t !5(
a
E dt ua~t! d„r2Ra~t!…. ~7!

In terms of ĉ, the Fourier transform of the dynami
charge density correlation function is given by

gu~k,t !5
e2

V
^ĉ~2k,t !ĉ~k,t !&, ~8!

where the brackets denote an average over the annealed
ables. Note that the correlation function depends explic
on the disorder. The calculation is simplified considerably
making use of the fact that the correlation function is se
averaging, which means thatgu(k,t)5gu8(k,t) with prob-
ability 1, where the bar denotes an average over
quenched variablesu8. This means that in order to fin
gu(k,t) for a representativeu drawn from the Gaussian prob
ability distribution Eq.~4! ~which is what we are after!, it
suffices to calculate the average of this quantity over
disorder.

We will calculate g(k,t)ªgu8(k,t) by means of the
Lagrange version@6,7# of the MSR ~Martin-Siggia-Rose!
formalism @8#. In the appendix we have provided a bri
derivation of the MSR functional. It is convenient to intro
duce an external fieldh(k,t) that couples toĉ(k,t). The
dynamic charge correlation function can then be found
differentiating the logarithm of the MSR functionalZ@h#

1The hat onĉ denotes the dependence on the annealed varia
Ra(t), and the quenched variablesua(t). This notation should not
be confused with the notation in the MSR formalism, where the
indicates conjugated variables~see Appendix A!. We stick to these
notations because of convention.
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twice with respect toh. In principle, the average over th
quenched disorder should be performedafter the differentia-
tion, but sinceZ@h50#51 is independent of the quenche
variables~see the Appendix!, the order of operations can b
interchanged. This is a great simplification, and it makes
MSR formalism especially suitable for systems wi
quenched disorder.

Starting from Eqs.~A9! and ~A10!, and substituting the
effective Hamiltonian Eq.~5! for the interaction energy, one
arrives at the expression for the MSR functional. Sin
analogous calculations have been published before~see in
particular Ref.@9#! we will not present the details, but jus
give the result. During the derivation, the following field
arise

ĉ1~k,t !5(
a
E dt ua~t! exp@ ik•Ra~t,t !#,

ĉ2~k,t !5(
a
E dt ua~t! k•R̂a~t,t !

3exp@ ik•Ra~t,t !#. ~9!

In the quadratic approximation, the final disorder av
aged expression forZ@h# is

Z@h#}E Dc1Dc2Df1Df2

3expF2L1E
v
E

k
h~2k,2v! c1~k,v!G , ~10!

where the LagrangianL is given by~there are summation
over the indicesi , j )

L52l E
v
E

k

4p

k2
c1~2k,2v!c2~k,v!

2 i E
v
E

k
f i~2k,2v!c i~k,v!

1
c

2Ev
E

k
Vi j ~2k,2v!c i~2k,2v!c j~k,v!. ~11!

c5npN/V is the density of charged monomers. The in
gral measures are defined by

E
v
ª

1

2pE dv E
k
ª

1

~2p!3E d3k. ~12!

Although in the full expression for the functionalZ@h#
there are more fields present, in the quadratic approxima
these fields couple neither toc i , nor to f i , and can there-
fore be omitted. Consequently, in the quadratic approxim
tion the hydrodynamic interactions are not taken into acco
in the calculation ofg(k,t). Therefore, our results are onl
valid in the length scale and time scale regime where
dynamics are expected to be Rouse-like; which means le
scales larger than the blob size, and time scales larger

es

t
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HINDRIK JAN ANGERMAN AND EUGENE SHAKHNOVICH PHYSICAL REVIEW E64 041802
the blob relaxation time. The integrals overc i andf i in Eq.
~10! are Gaussian and can be calculated explicitly, a
which g(k,t) can be obtained by differentiating the resu
twice with respect to the external fieldh. The result is

g~k,v!5
cV11~k,v!

@12k2k22V12~k,v!#@12k2k22V21~k,v!#
,

~13!

wherek2
ª4pl c is the Debye-Hu¨ckel expression@3# for the

inverse square screening length. The functionsVi j are given
by

V11~k,t !5
1

NE dt^exp@ ik•„R~t,t !2R~t,0!…#&0 ,

V12~k,t !5
1

NE dt^k•R̂~t,t !

3exp@ ik•$R~t,t !2R~t,0!%#&0 ,

V21~k,t !52
1

NE dt^k•R̂~t,0!

3exp@ ik•$R~t,t !2R~t,0!%#&0 ,

V22~k,t !52
1

NE dt^k•R̂~t,t !k•R̂~t,0!

3exp@ ik•$R~t,t !2R~t,0!%#&0 . ~14!

The averagê •••&0 is calculated with respect to th
single-chain Rouse LagrangianL0, which is given by

L5E
v
E dtR̂~t,2v!•R̂~t,v!

1E
v
E dtvR̂~t,2v!•R~t,v!

2 i E
v
E dtR̂~t,2v!•

]2R~t,v!

]t2
. ~15!

The calculation of the functionsVi j in Eq. ~14! can be
simplified by making use of the fact that we are only inte
ested in processes occurring at length scales of the ord
the blob sizej. As is usual for the semidilute regime, th
blob size reaches a finite limit when the chain length
proaches infinity. This limiting value is reached once t
chain length exceeds the value necessary for an isolated
tral polyampholyte chain to collapse into a globule. It fo
lows that for the processes occurring at length scalej the
limit N→` is meaningful, and approached easily in expe
mental situations. Therefore, we can safely assume tha
wave vectors of interest satisfyk;j21@N21/2, which will
simplify the calculations. Considering the time scale, it
clear that the processes occurring at length scalej are much
faster than those occurring at length scaleN1/2. Therefore, in
the calculation ofVi j (k,t) we can restrict ourselves to time
04180
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satisfyingt!tR , wheretR is the Rouse time@10# of a single
chain. In this wave vector and time regime it is possible
find explicit and simple expressions forVi j (k,t). Those read-
ers who are interested in the calculation leading to Eq.~16!
are advised to study the Appendix of Ref.@9#, where similar
calculations are worked out in detail. The result is

V11~k,t !5exp@2k2utu1/2#,

V12~k,t !52u~2t !
k2

utu1/2
exp@2k2utu1/2#,

V21~k,t !52u~ t !
k2

utu1/2
exp@2k2utu1/2#,

V22~k,t !50, ~16!

whereu(t) is the Heaviside step function. We omitted n
merical constants of order unity. Although it is possible
find explicit expressions for the Fourier transformsVi j (k,v),
the resulting expression forg(k,v) would be rather compli-
cated. Instead, it is much more useful to derive a transpar
albeit approximate, expression forg(k,v). An additional ad-
vantage is that this simplified expression can easily be
verse Fourier transformed with respect to the frequen
Consider the frequency regimev@k4. By substitutingz5
2 ivt, distorting the integration contour back to the real ax
and expanding the integrand in powers ofzk4/v @9#, one
arrives at the following approximate expressions
Vi j (k,v):

uvu@k4⇒H V11~k,v!'uvu23/2k2,

V12~k,v!'H ~211 i !uvu21/2k2 v.0,

~212 i !uvu21/2k2 v,0.
~17!

Combining Eqs.~13! and ~17! one obtains

g~k,v!}
k2

l uvu1/2@~11uvk24u1/2!211#
uvu@k4.

~18!

There are two frequency regimes:

g~k,v!'H l 21k2k22uvu21/2 uvu!k4

l 21k2k2uvu23/2 uvu@k4.
~19!

The critical frequencyvc5k4 that separates the two re
gimes in Eq.~19! corresponds to the inverse blob relaxati
time in the Rouse model@usek21;j; with the help of Eq.
~6! one can restore the correct dimensions#. As discussed
before, the formalism used can only be expected to desc
the system correctly on time scales longer than the blob
laxation time, and therefore we should only consider the
gime uvu!k4. Using the relationsj;k21 andk2;cl , one
obtains that forj/je,jk,1 and (jk)4,j4v,1,

c21g~k,v!'~jk!2uj4vu21/2. ~20!
2-4
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DYNAMIC CHARGE-DENSITY CORRELATION FUNCTION . . . PHYSICAL REVIEW E64 041802
An inverse Fourier transform with respect to the fr
quency leads to

c21g~k,t !'~jk!2uj24tu21/2, ~21!

Equation ~21! has a reduced form, the wave vector
rescaled with the inverse blob size, and the time is resc
with the Rouse expression for the blob relaxation time. T
time rescaling seems to be wrong, the real blob relaxa
time is given by the Zimm expression2 t;j3, because below
the blob level the hydrodynamic interactions are n
screened. This incorrect result is due to the Gaussian
proximation @9#. This does not mean that Eq.~21! breaks
down completely, since at length scales larger thanj and
time scales longer thant the hydrodynamic interactions ar
screened and the chainis Rouse-like, Eq.~21! is valid, pro-
vided that one inserts the correct basic time scalet at the
blob level. Defining the dimensionless wave vectorqªjk
and the dimensionless timesªt/t, we arrive at our final
result

c21g~qj21,st!'q2s21/2, ~22!

which is valid if both 0.1,q,1 ~corresponding to length
scales in between the blob size and the entanglement len!,
and 1,s,q24 ~corresponding to times in between the r
laxation time at the blob level, and the relaxation time
length scaleq21). It would be interesting to test experimen
tally the power law decay in time.

IV. DISCUSSION

In order to determine the role of the electrostatic inter
tions in the expression for the dynamic charge density c
relation function, consider a system in which the electrost
interactions between the charges are switched off. Ph
cally, this could be achieved by immersing the polymer in
concentrated salt solution. Although in this case the cha
would not collapse or phase separate, we will still assu
that the system is semidilute, for instance by imposing
nonzero concentration. In this case, the charge density
relation function would follow immediately from Eqs.~13!
and ~16! by taking k50. It follows that when the electro
static interactions are absent, the charge density correla
decay according to a stretched exponentialg}exp(2at1/2),
which is completely different from Eq.~22!. We conclude
that the appearance of the power lawg}s21/2 must be due to
the Coulomb interactions. In order to determine the influe
of the polymeric bonds, we calculated for comparison
dynamic charge density correlation function of a salt so
tion, using the same formalism and approximations. The
sult is an exponential decay of the correlations over time

c21g~k,t !5
k2

k21k2
exp@2k4t# ~23!

2Use Eq. ~3! in combination with Stokes relationg;b̃h, and
express the result in terms of the units defined by Eq.~6!
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Again, the time dependence obtained is completely differ
from that of Eq.~22!, meaning that the presence of the pol
meric bonds has a large influence on the relaxation of cha
density fluctuations.

The dynamic correlation function for thetotal density is
qualitatively different from that for the charge density. To
first approximation, the presence of the charges does
have an influence on the dynamics of the total density
follows that the dynamic correlation function for the tot
density is the same as in the case of a neutral semid
polymer solution, which has been calculated within the q
dratic approximation in Ref.@9#. On length scales that ar
small compared to the radius of gyration of the chains,
large compared to the correlation lengthj, the fluctuations in
the total density decayexponentiallywith time @see Eq.
~3.19! in Ref. @9##.
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APPENDIX

In this appendix we present a brief derivation of t
Martin-Siggia-Rose functional@8#. We will follow the
method developed in Refs.@6,7#. Consider a system ofN
interacting point particles in solution. Letn51, . . . ,N num-
ber the particles, leta51,2,3 denote a Cartesian coordina
and letRna be thea component of the position of particlen.
Let R denote the 3N-dimensional vector with component
Rna , and letU@R# denote the interaction energy. In case th
R represents the coarse grained conformation of a poly
chain, entropic contributions have to be taken into acco
and one should replaceU by an effective HamiltonianH.
The time evolution of the probability densityP@R,t# is gov-
erned by the Fokker-Planck equation@10,15#

]P

]t
5“•L•@kBT“P1P“U#, ~A1!

where“ represents the vector with components]/]Rna , and
dots denote inner products. The mobility matrixL @R# is
given by @10#

Lna,mb5Hab~Rn2Rm! nÞm,

Lna,nb5
dab

g
. ~A2!

Hab(r ) is the Oseen tensor~see Ref.@10#, Appendix 3 III!
describing the hydrodynamic interaction,Rn denotes the po-
sition of particlen, andg is the friction coefficient per par-
ticle. In order to derive the Martin-Siggia-Rose functional
is convenient to switch first from the Fokker-Planck equat
to the equivalent Langevin equation@15#. In the Stratonovich
interpretation it is given by@6#
2-5
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HINDRIK JAN ANGERMAN AND EUGENE SHAKHNOVICH PHYSICAL REVIEW E64 041802
]R

]t
52L•“U1kBT“•L2

1

2
g•~“•g!1g•z. ~A3!

The stochastic forcez is a white Gaussian noise with firs
two moments

^z~ t !&50 ^z~ t !z~ t8!&5Id~ t2t8!. ~A4!

I is the 3N33N identity matrix. The matrixg is related to
the mobility matrixL by @6#

g•gT52kBTL . ~A5!

Equation~A5! leaves some freedom in the choice ofg,
which can be used to impose the condition@6#

“•g50. ~A6!

Using this, the Langevin equation simplifies to~it can be
shown that“•L50)

]R

]t
52L•“U1g•z1ĥ. ~A7!

The external forceĥi(t) working on particlei is intro-
duced in order to be able to calculate response functio
This force will be set to zero afterwards. In Refs.@6,7# it is
worked out in detail how one can derive, starting from
Langevin equation, the expression for the path probab
distribution P@R(t)#. By introducing the so-called conju
gated field R̂(t), which is rather straightforward in th
Lagrange formalism@7#, one finds the expression

P@R~ t !,ĥ#5E DR̂~ t !expF2L@R,R̂#1E dtĥ~ t !• i R̂~ t !G ,
~A8!

where the ‘‘Lagrangian’’L@R,R̂# is given by

L@R,R̂#5E dt@kBTR̂•L•R̂1 i R̂•~Ṙ1L•“U !#. ~A9!

The Martin-Siggia-Rose functional is defined by integr
ing the path probability over all possible evolutionsR(t) of
the system, in the presence of the external fieldsĥ and h,
where the fieldh couples toR. One obtains
04180
s.

y

-

Z@h,ĥ#5E DR~ t !E DR̂~ t !expF2L@R,R̂#

1E dth~ t !•R~ t !1E dtĥ~ t !• i R̂~ t !G .
~A10!

It follows from Eq.~A8! that the correlation and respons
functions of the system described by the Langevin equa
~A7! can be obtained from the MSR-functional Eq.~A10! by
differentiation with respect to the external fields. Howev
the continuum expression forZ, as it is given here, is ill
defined@16#. For instance, it is not possible to determine t
value of the equal-time response function^R(t) i R̂(t)&. Re-
tracing the derivation of Eq.~A10! one finds that the discreti
zation underlying the integrals over time is such that
equal-time response functions are identically zero@16#. This
extra information is sufficient to remove all ambiguity fro
Eq. ~A10!.

We discuss briefly the adequacy of the Langevin equa
Eq. ~A7! to describe the dynamics of polymer solutions.
has been argued@17# that Eq.~A7! would be inconsistent, in
the sense that whereas the thermal fluctuations of the m
mers are taken into account, the thermal fluctuations of
solvent velocity field are not~the Oseen tensor gives th
averagesolvent velocity as a function of the forces!. In order
to obtain the same level of description for both the partic
and the solvent, Oono and Freed@17# introduced a set of
coupled Langevin equations. However, it seems to us that
only difference between these Oono-Freed equations and
~A7! lies in the neglect of the solvent inertia in the latter, f
the following reason. It was shown in Ref.@9# that if one
derives the MSR functional from the Oono-Freed equatio
the velocity and its conjugate appear quadratic in the
grangian, and so they can be integrated out explicitly. T
resulting functional is identical to the one obtained from E
~A7!, provided that one takes the solvent density to be ze
Since the effects of solvent inertia on the dynamics of po
mer solutions are negligible anyway, we conclude that
~A7! is equivalent to the Oono-Freed equations. As an ill
tration of the irrelevancy of the solvent inertia, consider t
Zimm model. The characteristic frequencyv of fluctuations
with wave vectork is given by@10# v5kBTk3/6ph, where
h is the solvent viscosity. It follows from the Navier-Stoke
equation that the solvent inertia is negligible ifrv!hk2,
wherer is the solvent density. Taking the viscosity and t
density of water one finds that the effects of the solv
inertia are negligible on length scalesL@10213 m. Never-
theless, if one is interested in the correlation and respo
functions of the solvent velocity field, the Oono-Freed equ
tions are certainly useful@9#.
.
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